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IMPROVEMENT OF A PRESSURE GRADIENT METHOD 
AND ITS APPLICATION TO AN UNSTEADY FLOW 

PROBLEM 
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SUMMARY 
The pressure gradient method using velocity components and components of a pressure gradient as 
dependent variables has been modified to solve incompressible Newtonian fluid flow problems numerically. 
Applying this modified method to unsteady-state development of flow in a circular cavity shows that, at least 
for the case of a low Reynolds number flow, relative errors produced by the proposed method are smaller for 
most time intervals than those produced by the primitive velocity-pressure variable method and by the 
standard pressure gradient method. Also it is found that the modified and standard pressure gradient methods 
can be applied to the unsteady circular cavity flow at a moderate Reynolds number of at least up to 200. 
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INTRODUCTION 

The Navier-Stokes equations governing incompressible Newtonian fluids are expressed generally 
in the form of non-linear second order partial differential equations. Thus, analytical solutions in a 
closed form, or self-similarity solutions expressible by ordinary differential equations, have been 
obtained in very limited situations. Therefore, the necessity to simulate the Navier-Stokes 
equations numerically with boundary conditions and/or initial conditions is increasing to obtain 
detailed flow information such as velocity fields numerically. The procedure for numerical 
simulation of the Navier-Stokes equations can be divided into three categories: (1) choice of 
independent and dependent variables, (2) discretization of the governing equations, (3) numerical 
solution of the discretized equations. Of these, the second and the third are common to most 
numerical solution procedures for partial differential equations in space and/or time, and are found 
elsewhere.'-5 The remaining item, i.e. how to choose dependent and independent variables, is 
highly dependent on the form of the governing equations. Although a basic set of dependent 
variables is known from the construction process of the governing equation@), some arbitrariness 
of the selection ofdependent variables exists to obtain a higher rate ofnumerical computation or to 
obtain better accuracy or stability of numerical computation, because numerical solution 
processes are very sensitive to the form of the discretized equations, i.e. to the choice of variables. 

For the Navier-Stokes equations for incompressible Newtonian fluids in an isothermal flow, 
pressure and velocity components can be selected as primitive dependent variables. Alternatively, 
since velocity components can be derived from a stream function (in the case of a two-dimensional 
flow or an axisymmetric flow) or from a curl of a vector (in the case of a three-dimensional flow), the 
stream function or the components of the vector can be selected as dependent variables, and 
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consequently pressure itself can be obtained from a total differential equation for pressure through 
the Navier-Stokes equation. On the other hand, since pressure itself is independent of density and 
temperature for incompressible fluids, and since the Navier- Stokes equation for incompressible 
Newtonian fluids is governed not directly by pressure itself but by the pressure gradient, it is 
possible to select a velocity vector and a pressure gradient as unknown dependent variables; such a 
method is called a pressure gradient method and the possibility of its application to a two- 
dimensional steady-state flow problem has been briefly di~cussed;~ this method results in requiring 
to develop a new solution procedure or discreti9ing equations to attain a greater numerical 
stability. 

In this paper, a possibility of improvement of the pressure gradient method for the Navier- 
Stokes equation is proposed and some features of the pressure gradient method are discussed with 
numerical examples for an unsteady-state developing flow problem. 

ANALYSIS 

Formation of a solution procedure 

equation are expressed as 
The Navier-Stokes equation for an incompressible isothermal fluid flow, and the continuity 

D 
p-V=-Vp+pAV+F,  Dt 

divV = 0, (21 
respectively. Here the necessary and sufficient condition of compatibility for the pressure p is 
expressed as 

curl (Vp) = 0. (3)  
Especially for a two-dimensional plane flow, two components of equation (1) and one component 
(in the direction perpendicular to the flow plane) of equation (3) play a role; the remaining 
components of equation (3) can be satisfied automatically considering the two-dimensionarity. 

In the following, dependent variables can be selected as the velocity components and the 
components of the pressure gradient. Thus equations (1)-(3) are regarded as differential equations 
for V and Vp (instead of V and p) .  The pressure p itself at each time can be obtained in terms of Vp 
through a total differential equation in space: 

Discretization 

In the current proposal an arbitrary method of discretization such as a finite difference, an FEM, 
or a weighted residual for the terms (D/Dt )  V and AV in equation (1) can be selected. However, 
sinceVp appears explicitly in equation (l), the following approximation for Vp at a given time in 
equation (1) is proposed: 

where the subscripts on Vp denote the location where the gradient Vp is to be evaluated, the 6Xms 
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are the relative position vectors (with respect to the location X) of the neighbouring points 
surrounding X, and the Pms are suitable constants (or variables of X and 6Xm) such that 

1 PmSXm = 0. 
m 

(7) 

Such selection of 8,s is possible if X lies in the interior of the domain (not on the boundary) as long 
as points where variables are to be evaluated are moderately distributed in space, to which almost 
all grid generation would apply. Moreover, if a sufficient number of points surrounding the point X 
are available, then the multidimensional normalized vector (PI, p 2 , .  . . , P k ) /  / I  (PI,  p 2 , .  . . , P k )  / /  can 
be determined with a certain arbitrariness ( k  is the number of points) and a different set of 
(PI, BZ,. . . , P k )  may be assigned to a different component of Vp. The truncation error included in 
equation (5) is O(max I/ SX, I /  2 ) .  Methods for discretizing equation (2) and ( 3 )  are arbitrary. 
However, in approximating the partial derivatives through the operators div and curl, it is 
desirable to retain at least three non-zero terms in order to connect mutual variables at the 
neighbouring points strongly. For example, it would be better to avoid using a central difference 
scheme to a first order partial derivative for equally spaced grid points if a finite difference method 
is applied; instead, if necessary, apply a forward (or backward) difference scheme which can be 
mixed with a central difference scheme; otherwise, slightly oscillating values with a period of 
roughly two grid spacings may be superposed on the actual values owing to the lack of direct 
interaction between two adjacent points. 

Although in addition to the spatial estimation as mentioned above it is necessary for unsteady 
flow problems to specify the time when the spatial estimation is to be made and also to introduce an 
approximation for partial derivatives with respect to time, no restriction is imposed on what 
method is selected for the time estimation under the currently proposed pressure gradient method. 

AN EXAMPLE O F  THE ANALYSIS 

Flow configuration 

As an example the current proposed modified pressure gradient method is applied to a two- 
dimensional unsteady circular cavity flow in a horizontal plane; that is, Newtonian fluid enclosed 
in a circular cavity of radius a is assumed to be initially at rest (t < 0) and at t = 0 the portion 
corresponding to a fixed half boundary of radius a suddenly starts to move at a constant speed V in 
its own curved plane in the counterclockwise direction. 

Formulation of the problem 

Hereafter for simplicity co-ordinates, pressure, velocity and time are non-dimensionalized with 
respect to a, p V 2 ,  V and a/V, respectively. Thus, as usual, a single parameter appears in the 
equations of motion as a Reynolds number Re( = paV/p) .  To describe the motion, a cylindrical 
polar co-ordinate system (r,  8), locating its origin at the centre of the cavity, is used with a Cartesian 
co-ordinate system (x,y) as in usual orientation with the common origin, and without loss of 
generality the moving boundary is assumed to be r = 1, - n < 8 < 0. Initial conditions at  t = 0 are 
expressed as 

(8) 
u = v = O ,  for / r l < l ,  
u=u=O,  for Y =  l , O < O < n ,  
u = O , v =  1 for r =  1, - n < 8 < 0 ,  
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where u and u denote the radial and circumferential components of velocity, respectively. 
Boundary conditions are 

u=0,  for r = 1, 

0, for Q < $ < n , r = l  
1, for - x < S < O , r = l  

v = {  

Grid points where a velocity vector V and a pressure gradient Vp are to be evaluated consist of the 
origin and other points ( r i ,  8j)7 where 

r .  = - 
' M' 

1 
i = 1,2,. . . , M ( M  a suitable integer), 

I L  
0, = ( j  - 0+5)-, j = - N + 1,. . . , 0,1,. . . , N ( N  a suitable integer), 

N 

so that the two singular points (r  = 1,8 = 0) and (r  = 1,8 = n) are not included in the grid points. 
Among many possibilities, the components of Vp at the point (Ti ,  O j )  in the interior of the domain 
are derived from different expressions using a common negative parameter p, i.e. 

The pair (i,j) in the subscripts means that the said value followed by the pair is to be evaluated at the 
point ( r i ,  Sj).  In the case ofj = - N + 1 andj  = N ,  j - 1 and j + 1 in equation (12) should be read as 
N and - N + 1, respectively. Also in the case of i = 1, the term (dp/ar)i- stands for the value 
(dp/dr)  at (r = 0, 8 = 8,) and 

Note that the x- and y-components of the vector Vp at the origin are denoted as (dp/dx), and 
(dp /dy ) ,  respectively and equation (5) does not apply to this case. The components of the vector Vp 
at the wall can be obtained through the equations of motion evaluated there. Through equations 
(1 1 )  and (12), applying p =  0 reduces to the standard pressure gradient method. The x- and y- 
components of the velocity vector at the origin are denoted as U ,  and V,, respectively. Then r- and 
&components of the velocity at the origin, denoted as u, and u,, become 

u, = U ,  cos 8 + V, sin 8, 

u, = - U o  sin O + V, cos 8. 
(14) 

(15) 

Thus equations (1)-(3) can be discretized throughout the interior of the domain as follows: 

(i) For the local acceleration at the current time t 

6t  ' i  1 a 
-V(X, t )  % - V(X, t + 6t )  - V(X, t )  
at 

, 

where 6t is a time increment. 

approximations. 
(ii) All the convected terms are evaluated at time t with suitably selected finite difference 
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Figure 1. Streamlines in an unsteady flow in a circular cavity at t = 32/121 (Re = 10) 

(iii) All the other terms are evaluated at  time t + 6t also with suitably selected finite difference 

Especially at  the origin the differential forms of equations (2) and (3) for V and Gp are satisfied 
automatically, considering the component expression such as equations (14) and (15) for V and 
a similar one for Vp. Therefore, the continuity of either V or Vp at the origin should be 
supplemented instead of equations (2) and (3) at the origin; this should be evaluated at time t + 6t. 

Such a discretization constitutes a set of full implicit simultaneous linear equations for the 
unknowns at time t + 6t; this can be solved with the initial conditions. 

approximations, including boundary conditions. 

Numerical results 

Figures 1 and 2 show patterns of streamlines and isobars for 

Yt 
Re = 10, t = 32/121 (p  = - 0.5, 

I 

Figure 2. Isobars in an unsteady flow in a circular cavity at t = 32/121 (Re = 10) 
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Figure 3. Streamlines at a sufficiently large time in a circular cavity, which correspond to those in a steady flow (Re = 10) 

M = 11, N = 10, 6t = 1/121), where stream functions are calculated directly by integrating the 
velocity component, and the pressure itself is due to equation (4). Figures 3 and 4 show patterns 
of streamlines and isobars for Re = 10, t = co (p = - 0.5, M = 11, N = lo), which correspond to 
the steady-state flow patterns (obtained at sufficiently large time). 

DISCUSSION 

Comparison with other method 

In the case of a finite value of Re, non-linear convective acceleration terms do not vanish and 
it is extremely hard to get an exact analytical solution. Thus the applicability of equation (5) 

Y 

Figure 4. Isobars at a sufficiently large time in a circular cavity, which correspond to those in a steady flow (Re = 10) 
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can be compared for sufficiently small values of Re, using an asymptotic analytical solution for 
Re -+ 0, where the stream function t+b and the pressure p can be expressed as 

r2 - 1 tan-' (-) 2r sin0 
27c 1 - r 2  

t + b =  - $ ( r 2 - 1 ) + -  

(18) 
m 1 

n + 1 + 1 exp( - Pirnt /Re)  rn cos (no), ( t  > 0), 

where &,(n = 0, 1, 3, 5,. . .) is the mth positive zero of the Bessel function J , ,  l(x) and p c  is the 
pressure at the centre of the cavity. Using equation (18), numerical errors mainly due to discretiza- 
tion can be estimated and the error behaviour with time can be compared among methods (a 
finite difference method where V and p are supposed to be dependent variables (V - p method), 
a finite difference standard pressure gradient method where V and Vp are supposed to be depen- 
dent variables (p  = 0), and a finite difference modified pressure gradient method where V and 
Vp are supposed to be dependent variables (p  < 0)); these are shown in Figures 5 and 6, where 
E ,  and E,, denote measures of pressure errors and pressure gradient errors, respectively, and 
are defined as 

0.0 8 

0.0 6 
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0.0 2 
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0.00 I I I I I I l l  I I I I I I 1 1 1  1 I I  

1 6 ~  16* - t 16' 
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Figure 5. Error behaviour of E ,  with time for different methods possessing the same parameters of common values 
(Re = 0.001, St = 10-4/121, M = 11, N = 10). V: a V-p method, A :  p = 0 (a standard pressure gradient method), 0 :  p = 

- 0.5 (a modified pressure gradient method), 0: p = - 1.0 (a modified pressure gradient method) 
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Figure 6 .  Error behaviour of E,, with time for different methods possessing the same parameters of common values 
(Re  = 0001,6t = 10-4/121, A4 = 11, N = 10). V: a V-p method, A :  b = 0 (a standard pressure gradient method), 0 :  /r = 
- 0.5 (a modified pressure gradient method). Since the trend of data for B = - 1.0 is approximately equal to that for 

(I = - 0.5, data for f i  = - 1.0 have been omitted 

where n is the total number of points to be evaluated, and the subscripts num. and anal. mean 
‘obtained numerically’, and ‘obtained analytically’, respectively. In Figures 5 and 6, all the dis- 
cretizing methods possess the same spatial division and the same time increment, and for the 
estimation of equation (19), pressure is evaluated at the grid points over three concentric circles 
(r  = 10/11, 7/11, 4/11) (n = 60), and for the estimation of equation (20) pressure gradients are 
evaluated at points over three concentric circles ( r  = 19/22, 13/22, 7/22) (n  = 60). As far as the 
current spatial division and time increment at a specified small value of Re are concerned, as 
in Figures 5 and 6, the current modified pressure gradient method possessing a parameter of 
p = - 0.5 produces better accuracy for most time intervals. 

Stability criteria for numerical time integration 

Under the current initial and boundary conditions, the transient solution would be expected 
to approach the steady-state solution so long as Re is not sufficiently large. Thus it is desirable 
that a numerical transient solution will approach a steady state after a sufficient time elapses. 
Such a character can be retained not only for small values of Re as shown in Figures 3 and 4, 
but also even for Re = 200 under the current pressure gradient method ( f l =  - 025,dt = 10/121, 
M = 11, N = 10) and also under the standard pressure gradient method (p=O, St = 10/121, 
M = 11, N = 10). This means that the pressure gradient method can also be used to find a 
steady-state solution through a transient solution. The optimum value of f i  or in general x b ,  
would depend on Re, 6t, and also grid spacing. 

CONCLUSION 

A modified pressure gradient method has been proposed and applied to an unsteady-state 
developing flow; this shows that the current method using a suitable value of a parameter can give 
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better accuracy at least at a small value of Re than the other compared methods and that numerical 
time integration can produce a steady-state solution through a transient solution even for 
Re = 200. 
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NOTATION 

radius of a cavity 
relative errors of pressure (defined in equation (19)) 
relative errors of a pressure gradient (defined in equation (20)) 
external body force 
pressure 
radial co-ordinate in a cylindrical co-ordinate system 
Reynolds number = p a V / p  
time 
radial velocity component 
circumferential velocity of a moving wall 
velocity vector 
circumferential velocity component 
location vector 
co-ordinate in a Cartesian co-ordinate system 
co-ordinate in a Cartesian co-ordinate system 
parameter introduced in equation (1 1) 
parameter introduced in equation (5) 
tangential co-ordinate in a cylindrical co-ordinate system 
viscosity of fluid 
density of fluid 
stream function 
material time derivative operator 
Laplacian operator 
gradient operator 
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